issue_comments
1 row where author_association = "OWNER", issue = 377155320 and user = 9599 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: updated_at (date)
issue 1
- Integration with JupyterLab · 1 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | issue | performed_via_github_app |
---|---|---|---|---|---|---|---|---|---|---|---|
435974786 | https://github.com/simonw/datasette/issues/370#issuecomment-435974786 | https://api.github.com/repos/simonw/datasette/issues/370 | MDEyOklzc3VlQ29tbWVudDQzNTk3NDc4Ng== | simonw 9599 | 2018-11-05T18:06:56Z | 2018-11-05T18:06:56Z | OWNER | I've been thinking a bit about ways of using Jupyter Notebook more effectively with Datasette (thinks like a |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Integration with JupyterLab 377155320 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [issue] INTEGER REFERENCES [issues]([id]) , [performed_via_github_app] TEXT); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1