issue_comments
1 row where author_association = "OWNER" and issue = 512996469 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Ways to improve fuzzy search speed on larger data sets? · 1 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | issue | performed_via_github_app |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 548055544 | https://github.com/simonw/datasette/issues/607#issuecomment-548055544 | https://api.github.com/repos/simonw/datasette/issues/607 | MDEyOklzc3VlQ29tbWVudDU0ODA1NTU0NA== | simonw 9599 | 2019-10-30T18:37:44Z | 2019-10-30T18:37:52Z | OWNER | .Hi @zeluspudding You're running your search queries using the "contains" filter, which uses a SQL Instead, you should take a look at SQLite's FTS - full text indexing feature. You can build a FTS index against a column and dramatically speed up searches for words within that column. This documentation should help get you started: https://datasette.readthedocs.io/en/stable/full_text_search.html |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Ways to improve fuzzy search speed on larger data sets? 512996469 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
, [performed_via_github_app] TEXT);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1