issue_comments
1 row where author_association = "OWNER", issue = 559964149 and user = 9599 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Introduce a SQL statement parser in Python · 1 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | issue | performed_via_github_app |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 582103280 | https://github.com/simonw/datasette/issues/665#issuecomment-582103280 | https://api.github.com/repos/simonw/datasette/issues/665 | MDEyOklzc3VlQ29tbWVudDU4MjEwMzI4MA== | simonw 9599 | 2020-02-04T20:36:48Z | 2020-02-04T20:36:48Z | OWNER | pyparsing has an example based on SQLite SELECT statements: https://github.com/pyparsing/pyparsing/blob/8d9ab59a2b2767ad56c9b852c325075113718c0a/examples/select_parser.py https://github.com/lark-parser/lark is a relatively new (less than two years old) parsing library that looks promising too. |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Introduce a SQL statement parser in Python 559964149 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
, [performed_via_github_app] TEXT);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1