issue_comments
1 row where issue = 1432013704 and user = 18738650 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- /db/table/-/upsert API · 1 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | issue | performed_via_github_app |
---|---|---|---|---|---|---|---|---|---|---|---|
1312534826 | https://github.com/simonw/datasette/issues/1878#issuecomment-1312534826 | https://api.github.com/repos/simonw/datasette/issues/1878 | IC_kwDOBm6k_c5OO7Eq | stevecrawshaw 18738650 | 2022-11-12T17:34:58Z | 2022-11-12T17:34:58Z | NONE | Hi Simon. I have just started experimenting with datasette in earnest, looking at it's suitability for air quality open data. A bulk upsert \ upsert_all would be very useful for me in enabling real time data to be pushed from a sql server database with FME server to a datasette db. An hourly process queries the last 2 hours of data and pushes that to my database, inserting new data and updating existing combinations of pk siteid and date_time. This is already implemented on our current open data portal. Excited to see your progress with this! Thank you for this amazing software. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
/db/table/-/upsert API 1432013704 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [issue] INTEGER REFERENCES [issues]([id]) , [performed_via_github_app] TEXT); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1